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Abstract 

Lovelock actions  (more  precisely,  extended  forms) when 
varied  as Cartan forms  on  subspaces of higher 
manifolds,  generate well set, causal  exterior 
lar,  the Einstein-Hilbert  action  4-form, 
of 810, yields a well set  generalized 
Ricci-flat  solutions are selected  by 

1. Introduction ~ 

Field  theoretic Lagrangians (involving, say, p ndent variables and n - p 
dependent variables) can be  systematically  “ext to derive so-called Cartan 
forms, p-forms that are analogs of the  Cartan  ian 1-forms for variational 
principles  in the differential geometric  formulat sical mechanics [l] [2] [3] 
141 [SI [6] [7] [8] [9] [lo] [Ill I121 [13] [14]. Conve an forms of degree p can 
often be  postulated,  and field theories  in p dim  be  obtained  from  them 
by variation, using Cartan’s  formalism of exteri a1 systems (EDS). Such 
Cartan forms and the corresponding variational  n a “target”  space that 
is a suitable  bundle over the n dimensional spa  endent  and  dependent 
variables. The  target space may be  a  jet  bun p variables, but  other 
targets occur in  contexts such as  geometry o 

The  sort of variational EDS we discuss i s generated by struc- 
ture 1-forms and  their closure 2-forms exp sion of p-dimensions, 



or a subbundle over it,  into  the  target bundle, y a. set of p-forms express- 
ing the field equations or equivalent geometri itions. To justify use of a 
proposed Cartan form it  must  be shown to le rbitrary  variation, t'o such 
p-form field equations. The derived EDS m sed (thereby including all 
integrability  conditions and being self-consis set,  and, in fact, causal, 
i.e., it  must  satisfy  Cartan's  criteria for the  aracteristic integers s ,  of 
the EDS,  and have sp = 0 [7] [15] [16] [17]. ount to  the sa.tisfaction 
of a Cauchy-Kowalewski existence and uni  for the implied set of 
partial differential equations. 

An EDS derived variationally in this ee, since it is gener- 
ated by no forms of degree less than p ,  ot sing the immersion. 
An example  from  string  theory is  given i  example is vacuum 
electrodynamics,  formulated on the  jet a four-potential Ai 
[9]. Constraint-free  dynamics can perh  ient techniques for 
numerical  solution,  with  initial  conditi sional surfaces im- 
mersed in the  target space. Quantized 
to formulate, as the example  from elec 

Extremals of a p-form Lagrangian 
n dimensional immersing space as a t 
dynamics  and  partial differential equ from the  same 
Lagrangian intrinsically, that is to s 
p  independent variables [18]. These asis forms that 
satisfy different structure or contact 
and  simple  strings  (the example  in 
on immersing  orthonormal  frame bu 

We have  calculated  sets of C 
from Cartan forms expressing sev 
Also known as dimensionally ext 
mal  area,  Einstein-Hilbert,  and, 
quadratic  and higher order. We 
all  lead to well set, causal and co 
that  this will be so generally. 

We have  recently discussed a 
of (an  orthonormal  frame bund1 
get space, the 55 dimensional o 
pseudo-Euclidean) ten dimensi 
was not derived from a Carta 
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energy-momentum  constraints and field equati n Section 4 we introduce a' 
closely related'new variational EDS  for a more 1 theory of gravitation, de- 
rived from a Cartan form that is just  the Ei ilbert Lagrangian, set on 
immersion of four dimensions in Elo. The resu S has six 4-forms coding 
its field equations,  but no 3-form constraints.  calculate  Cartan's  character- 
istic  integers  and show that  the EDS is well causal. The new EDS is 
contained in the former, so solutions of the fo icci-flat solutions - are a. 
subset of the solutions of the more general th show the Ricci-flat solu- 
tions to be selected when certain  initial condi satisfied on an immersed 
three dimensional surface from which the fin integration proceeds. In 
this  final unique construction  these conditions hing of the four 3-forms 
- are no longer required to be applied at eac 

The Einstein-Hilbert Lagrangian gives in 
ories on immersion of four dimensions in frame bundle. 
The  setting of initial  conditions to specializ 
for immersion  in Elo. This is of course t 
era1 4-geometry [24] 1231. Similarly tre 
way, requires a (21 dimensional)  frame  b 
This  may  be the  natural first case to inv 
constraint-free  numerical  integration schemes. 

There  may well be close connections 
logical gravity  and supergravity, which e 
lead  on shell to  the same  extended  Gaus 
mersion [25]  [26].  We nevertheless shoul 
dimension p > 3. The gauge groups w 
equations for orthonormal  frames and 
and n - p ,  respectively. They  are no 
O(n - p ) ,  up to signature. We have 
classic embedding dimension that do 
[23]  [24]. And we have not explored 
the acceptability of quantum versions. 

2. Immersion geometries and the  exa ple of strings in  four 
dimensions 

We will suppress the writing of the exterior  multi lication operator  throughout 
this  note. Let E, be n dimensional Euclidean or P pseudo-Euclidean space. The 
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structure  equations for the basis forms of the frame  bundle over E, 
are 

dwP + wtw' = 0 

dw: + w,"w," = 0 (2.1) 

where p ,  u = 1,. . . , n. The wc are of this  space 
is in (n  + 1). Immersion of a p 
(1) dividing the range of p ,  Y 

p + 1,. . . ,n, and  rewriting 

dw' + W l W k  + W k W C  

dWA + W f W k  + w;wc 

ab; + w;cw," + whwj" 

dW; + wiw; + w;w: 

+ W k  W B  i- WCWB 
A k  A C  

and  then (2) forming the closed EDS generated  b 

the vanishing of which selects  subspaces so-called Darboux  bundles, 
The first p + 1 Cartan  characters of the EDS are  nonzero, 

s =  ( n - p  , . . . ,  

so from  Cartan's  theory  the dimension g of the subspace is calculated to be 

It has the  structure of a  fiber  bundle over a p base, since neither  the 
w j  ( ; p ( p  - 1) in number) nor the w i  ( f ( n  - in number)  appear in 
the  generators of the EDS. Corresponding to Cartan  characteristic 
vectors that  appear as  fibers  in the Clearly, they  express 
the  geometry of the  orthonormal at each point of a 
subspace.  Pulled back are in  involution, 
i.e., at each  point  they section. The wf 
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constitute  an  orthonormal connection, and, from tk 
the  Riemann curva,ture 2-forms induced in the sul 

Rf = -2wkwj c . 

This  explicit expression of the curvature in term, 
ture  equations  are known is a key advantage of  tht 
Lagrangian involving Ri it enables us to find an c 
forms. 

The last nonzero character of 2.3 is sp ,  so this E 
functions of p variables enter in the general solutio1 
tions  must  be  added - in the guise of additional genc 
EDS - to achieve sp = 0. 

For the example of strings,  with two dimension 
and A ,  B = 3,4,  we have explicitly, in a 10 dimensic 
generating forms of the EDS from 2.3: 

w3 

w4 

w’wl” + w2w; 

w’wl” i- w2w;. 

These  are  to  be annulled  on  any solution submanifo 
g = 4. Solutions are O(2) @ O(2) bundles over a 
by wl, w2, wi ,  and w:. A 2 dimensional cross sect: 
an orthonormal  framing of a metric 2-space) tog€ 
connection wi , the “second fundamental forms” w: 
expressing arbitrary coframe orientation.  With prc 
is Minkowski space and  the immersed 2 dimension; 

Now consider the Lagrangian for extrema1 area 

A = w1w2. 

Using 2.2, its exterior  derivative is immediate: 

dA = w3(wiw2 - w ~ w ’ )  + w4(wi1 

This result shows the “miracle” referred to by sc 
each term is a  form  already in  the immersion EDS, 
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E third line of 2.2, we see that 
‘space are 

(2-4) 

of basis forms whose struc- 
immersion method. Given a 

Kplicit EDS in  terms of basis 

DS is not causal: sp  arbitrary 
. Additional  dynamical equa- 
rating forms in the immersion 

5 immersed in  four, i ,  j = 1 , 2 
nal  frame  bundle over E4, the 

(2.5) 
d. We find s = {2,2,2,0}  and 
! dimensional space,  spanned 
on of a solution  bundle gives 
ther with a realization of the 
and wf , and also the field wi  
3er signs for signature the E4 

,1 space is a string. 
the  Cartan form 

) - w2w ) (2.7) 
2 4 1  

me authors [13]: a factor of 
riz., w3 and w4. So if the other 



(2-form)  factors in 2.7 are added to  the EDS 2.5, tl 
in the resulting EDS. This in turn means that, for 
the  bundle over E4) the arbitra.ry  variation of A, e 

Lv = V dA + d ( V  1 

is contained in the resulting EDS and so vanishes w 
(modulo  the  exact or “boundary” term): 

V e d A c E D S V V .  

Thus  this new EDS resulting from arbitrary variat 

w3 

w4 

w;w1 + w;w2 

w;w1+ w;w2 

w;w2 - w;w1 

W i W 2  - w2w . 4 1  

This is the geometric  understanding of a functio 
consistency, one  must check closure, and calculate 
existence  and uniqueness. In this case closure is 
s = {2,4,0,0} and g = 4. And now s4 = 0. 
well set  and causal; general solutions are determin 
immersed  line. 

This process of construction of immersion E1 
Lagrangians is used in the following. The “miracle’ 
But regardless of how they have been discovered 
always the explicit  demonstration of closure and I’ 
causal Cartan  characters [17]. 

3. Lovelock  Lagrangians  for  immersic 

We treat Lovelock Lagrangians [18] in p dimensiol 
products of 1-forms wk and 2-forms R’j, complete 
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e result is that dA is quadratic 
tn arbitrary vector field V (in 
ven  by the Lie derivative 

Len pulled back into  a  solution 

on of A is generated by 

.a1 variational principle. For 
le Cartan  characters to verify 
immediate, and we find that 
his extrema1 string  theory is 
Id by four functions  set  on an 

S from postulated  geometric 
occurs in all cases considered. 
he justification of the EDS is 
[onte  Carlo  calculation of the 

n in flat spaces 

as p-forms that are  exterior 
y antisymmetrized on indices. 



Also, wk must  appear at least once, since in the immersion 
forms w A .  These forms are known as Gauss-Bonnet forms 
[25] [26]. We have discovered that, and 2.4, they  are 
Cartan forms leading to well set and causal EDS. 

the only Lovelock form is wiwj&;j. 

and R ' j w k E ; j k .  To  check the  latter we calculate 2.2 (and remembering the 
range of i , j  = 1,2,3), 

For an immersed 2 dimensional space, p = 2 n our example in Section 2, 

For an immersed  3 dimensional space  there ar Lovelock 3-forms: a ' W j W k & i j k  

This  has the desired quadratic  structure, i. f terms each of  which 
is the exterior  product of an immersion 1- mica1 2-form. So we 
must check for closure, and for properties EDS generated by 

Monte  Carlo  calculation of Cartan's  char that this EDS is  well 
set and causal for any  number of imme  particular, for three 
dimensions  immersed  in six, ( A ,  B = minimal immersion 
dimension for Ricci-flat (in  this case, fl ces, the orthonormal 
frame  bundle dimension of 6 dimensio calculate the  Cartan 
characters to  be s = {3,3,6,0,0,0,0, 0. In the following 
we will not  explicitly  write  any final 
Solutions are 9 dimensional  bundles 
free rotation of triads in a connect of the coframe at 
each point (w,"). 

and h?jWkW'E;jkl The first leads to a nd is the Einstein- 
Hilbert  Lagrangian. We discuss the ection 4. It  turns 
out  that  initial conditions  can  be a 

For an immersed 5 dimensional s 

theory. Written  out,  this Lagrangian is 

For an immersed 4 dimensional 

R'j w k w 1 w m E i j k l m ,  and R ~ ~ R ~ ~ ~ ~ E ~ ~  

A A B B m  w; wj wk wl w Eijkr  

from which we derive the closed ideal 
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We calculated the characters of this, immersing 5 

be 
orthonormal  frame  bundle, to 15 ( A ,  B = 6, e ,  15) which has a 120 dimensional 
dimensions (2, j = 1,.  - - , 5 )  in 

{ 10,10,10,10,20} 

well set, causal, 60 dimensional solutions that  are 

detail  in Section 4 on Ricci-flat solutions. 
S.xh restriction is explained in a quadratic  constraint on the Riemann  tensor. 
restrict solutions to those  with “initial  condition” 4-forms can be adjoined to 

and coframes wj and w i .  Five mensional fibers expressing free rotation of frames 
bundles over 5, with 55 di- 

In six dimensions the  three Lovelock forms leading to well set immersion EDS 
are  similar.  In seven dimensions a  cubic  gravity theory  appears.  The  pattern 
should now be  evident.  In all cases that we have alculated the variational EDS 
has  been well set  and causal. 

4. Constraint-free theories of gravity ~ 

We  now adopt  the Einstein-Hilbert Lagrangian for immersion of 4 
dimensional  Riemannian  geometry  in a higher geometry, in  par- 
ticular  in  ten  dimensions, Elo. Explicitly, this 

Using 2.2 most terms in its exterior  derivative cancel, leaving just 

which is quadratic in the immersion 1-forms wA an  the six 4-forms wi wj wk w E+[. 

.So we consider the immersion EDS generated by I B B A l  

This  system lives in  the 55 dimensional bundle over Elo. It  may 
readily be checked for closure. Monte Cartan’s  characteristic 
integers yields s = {6,6,6,12}. with 21 dimensional 

Note  in  particular we have in  Cartan’s  nested 
construction of solutions [17], found,  spanning 
an  immersed 3 dimensional it  determine  the 

fibers over a 4 dimensional base. 



final vector field V, by quadrature, causally an ntially uniquely, i.e., up to 
choice of arbitrary a.dmixture of the 21 Cartan  teristic vectors. Vectors VI, 
112, and 16 are dragged along & as it is const The wi are involutory, so 
linear  combinations of the V,  (z = 1, . - ,4 ) ,  m aken at each point so that 
r/: wj = 6: everywhere. The Riemann tensor ents  induced in a solution 
with  respect t80 this  orthonormal  frame  are 

and the Einstein  tensor  components  are 

If entirely  intrinsic  tetrad expressions for esired, six symmetric 
second fundamental forms,  denoted by K{ uced to describe the 
immersion at each point via 

and the inner  products 4.2 and 4.3 stein tensor becomes 

In  the case of positive  definite sig 
the correct  signature for qPq is us e to reflect the 
correct  signature. 

The dynamical  conditions, co rd order  in the 
K t .  They lead to 

Explicit differential equations fo 
variables, are  obtained on substit 
ulo 4.6. As with  all tetrad (or s 
ferential  equations, since the in 
such sets of equations  are der 
along the x .  Second order p 
coordinates  and metric fields g j j .  

Now, as  explained  in the I 
flat 4 dimensional  spaces im 
the Einstein 3-forms w t w f  
is contained  in the former, 



This is also clear from 4.6. Both theories are cau cause s4 = 0. The vector V4 

is unique. If 14, V2, and V,, which span a 3  dim 1 surface E, satisfy  already 
the conditions for Ricci-flatness, i.e.,  they  annu  forms at every point of C, 
the final unique  qua.drature  for V, (using the 4 nly) will, without  further 
constraint, construct  a Ricci-flat solution. rified this by calculating 
the  Cartan characters,  and explicit compon , and v3 using equations 
annulling the four 3-forms, whereas for V, he 4-forms in 4.1. The 
result was s = {6,6,10,8},  and  the four ve hree at a time,  annulled 
all 10 components of the four 3-forms Elp. 

The specialization to Ricci-flat solutions only of initial conditions 
(without  further 3-form constraints)  may  rstood intrinsically. We 
have  six homogeneous linear  equations for 4.6, and we impose the 
four conditions Ei4 = 0 on E. Thus  all Ep is well  known that  the 
components Ei4 then  remain zero in a nei . This follows from  the 
contracted Bianchi identities, which expr  entum conservation, in 
Einstein’s  interpretation of E;j. So all te  the neighborhood and 
a Ricci-flat solution has been selected, ju of initial  conditions. 
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